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1. Introduction

With the advent of precision measurements in Kaon physics (see [1] and references therein),

Kℓ3 decays offer the opportunity to probe charged current weak interactions at unprece-

dented levels. Most notably, with current experimental uncertainties, Kℓ3 decays allow

one to access the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing angle Vus at the sub-

percent level, and also provide competitive probes of lepton universality and the ratios of

light quark masses. In order to fully exploit the amazing experimental achievements, it be-

comes mandatory to have theoretical control of these decays at the percent level or better.

This requires quantitative understanding of the vector and scalar K → π form factors as

well as the electromagnetic (EM) corrections. The framework to analyze the EM corrections

is provided by Chiral Perturbation Theory (ChPT) [2], the low energy effective field theory

(EFT) of QCD, extended to include the photon [3] and the light leptons [4] as active degrees

of freedom. ChPT exploits the special role of π,K, η as Goldstone modes associated with

the spontaneous breaking of chiral SU(3)L × SU(3)R symmetry, and provides a systematic

expansion of the amplitudes in powers of the masses of pseudoscalar mesons and charged

leptons (p ∼ Mπ,K,ℓ/Λχ with Λχ ∼ 4πFπ ∼ 1.2 GeV) and the electromagnetic coupling (e).

In this article we present results on the electromagnetic corrections to the four Kℓ3

decay modes (K = K±,K0; ℓ = e, µ), based on a calculation of the amplitudes to leading

non-trivial order in ChPT (O(e2p2)). For all modes, we focus on (i) the electromagnetic
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(EM) corrections to the Dalitz plot, which are needed to extract the momentum dependence

of the K → π vector and scalar form factors from the experimental distribution; (ii) the

integrated radiative correction to the decay rate, which is a crucial input in extracting

the CKM mixing angle Vus from K → πℓν[γ] decays. The theoretical framework for the

calculation of electromagnetic contributions to O(e2p2) in Kℓ3 decays was presented in

ref. [5] and full numerical results on the Ke3 modes were given in refs. [6], adopting a

specific prescription for treating real photon emission and a specific factorization scheme

for soft photons , which results in the partial inclusion of higher order terms in the chiral

expansion. The novel features of the present work can be summarized as follows:

• Rather than using the soft-photon factorization procedure of ref. [5], we work here

to fixed chiral order e2p2, providing the complete corrections to decay distributions

and total decay rates to O(e2p0).

• We give new results for Kµ3 modes and update our previous analysis of Ke3 modes.

• We use a fully inclusive prescription for real photon emission, which is more appro-

priate for comparison with the experimental results.

• We update the structure-dependent EM correction, using the recent estimates of the

relevant low-energy constants (LECs) provided in refs. [7, 8].

Preliminary results of our analysis have been made public in conference talks and

proceedings [9, 10] and should be considered obsolete after the current publication. The

paper is organized as follows: in section 2 we give an overview of various contributions

to Kℓ3 radiative corrections and derive the relevant master formula for the corrections to

fixed chiral order (O(e2p0)). In section 3 we present our results for differential and total

radiative corrections, discussing their uncertainty. In section 4 we present our conclusions.

2. Radiative corrections to Kℓ3 decays: overview

2.1 Generalities on Kℓ3 decays

Let us briefly recall the main features of Kℓ3 decays. The invariant amplitude for the

process K(pK) → π(pπ) ℓ+(pℓ) νℓ(pν) reads

M =
GF√

2
V ∗

us ū(pν) γµ (1 − γ5) v(pℓ) CK

[
fKπ
+ (t) (pK + pπ)µ + fKπ

− (t) (pK − pπ)µ

]
, (2.1)

where CK = 1 for K0
ℓ3 and CK = 1/

√
2 for K+

ℓ3 modes. The expression in square brackets

corresponds to the matrix element 〈π(pπ)|V 4−i5
µ |K(pK)〉, expressed in terms of the form

factors fKπ
± (t), which depend on the single variable t = (pK − pπ)2 and are known to

O(p6) in ChPT [11 – 13]. To this order, a number of unknown LECs appear, of which

only a few can be determined experimentally. A complete prediction to O(p6) requires

theoretical input beyond ChPT, either from analytic approaches [14] or lattice QCD [15].

For phenomenological applications, it is common to parameterize the form factors f+(t)
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and f0(t) = f+(t) + t/(M2
K −M2

π)f−(t) in terms of slope and curvature parameters1 which

can then be measured:

f̄Kπ
+ (t) ≡ fKπ

+ (t)

fKπ
+ (0)

= 1 + λ+
t

M2
π±

+
1

2
λ

′′

+

t2

M4
π±

, (2.2)

f̄Kπ
− (t) ≡ fKπ

− (t)

fKπ
+ (0)

=
M2

K − M2
π

M2
π±

(
λ0 − λ+ − λ

′′

+

2

t

M2
π±

)
. (2.3)

The spin-averaged decay distribution depends on two independent kinematical vari-

ables, which we choose to be

z =
2pπ · pK

M2
K

=
2Eπ

MK
, y =

2pK · pℓ

M2
K

=
2Eℓ

MK
, (2.4)

where Eπ (Eℓ) is the pion (charged lepton) energy in the kaon rest frame, and MK indicates

the mass of the decaying kaon. Then the distribution (without radiative corrections) reads

dΓ(0)

dy dz
=

G2
F |Vus|2 M5

K C2
K

128π3
|fKπ

+ (0)|2 ρ̄(0)(y, z), (2.5)

ρ̄(0)(y, z) = A
(0)
1 (y, z) |f̄Kπ

+ (t)|2+A
(0)
2 (y, z) f̄Kπ

+ (t)f̄Kπ
− (t)+A

(0)
3 (y, z) |f̄Kπ

− (t)|2 , (2.6)

where the kinematical densities read (rℓ = (mℓ/MK)2 and rπ = (mπ/MK)2 ):

A
(0)
1 (y, z) = 4(z + y − 1)(1 − y) + rℓ(4y + 3z − 3) − 4rπ + rℓ(rπ − rℓ) ,

A
(0)
2 (y, z) = 2rℓ(3 − 2y − z + rℓ − rπ) ,

A
(0)
3 (y, z) = rℓ(1 + rπ − z − rℓ) . (2.7)

In the analysis of Ke3 decays, the terms proportional to A
(0)
2,3 can be neglected, being

proportional to re ≃ 10−6. Finally, the decay rate reads

Γ(0)(Kℓ3) =
G2

F |Vus|2 M5
K C2

K

128π3
|fKπ

+ (0)|2 I
(0)
Kℓ(λi) , (2.8)

I
(0)
Kℓ(λi) =

∫

D3

dy dz ρ̄(0)(y, z) , (2.9)

where the integral extends on the physical domain D3 defining the three-body Dalitz plot

(see ref. [5] for the explicit definition).

2.2 Radiative corrections: soft factorization vs fixed chiral order

The above description of differential distributions and decay rates is modified by EM effects,

which involve the emission of both virtual and real photons. Short distance electroweak

corrections can be lumped in an overall factor Sew = 1 + 2α
π

(
1 − αs

4π

)
× log MZ

Mρ
+ O(ααs

π2 ),

which is common to all semileptonic charged-current processes [17]. Long distance EM

corrections to Kℓ3 decays can be studied within ChPT. The leading non-trivial corrections

1See Ref [16] for a dispersive parameterization of the scalar form factor.
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to the amplitudes appear to O(e2p2) and imply corrections to the form factors, differential

distributions, and decay rates starting to O(e2p0).2

In ref. [5], it was argued that long distance EM effects can be taken into account by (i)

a universal (i.e. non structure-dependent) shift in the densities A
(0)
i (y, z) accompanied by

(ii) structure-dependent corrections to the form factors f̄Kπ
± (t). This result was obtained by

factorizing out of the amplitude the universal soft photon corrections [18] that are sensitive

only to charges, masses, and momenta of the particles involved in the decay. While this

recipe has the benefit of being simple and elegant, it inherently mixes different orders in the

chiral power counting (e.g. the soft-photon corrections proportional to fKπ
− (t) only appear

in the EFT calculation to O(e2p4)). As a consequence, the resulting decay distribution

and rate contain not only the full chiral corrections of order e2p0 but also incomplete

higher order corrections, generated by the factorization procedure. Since we are studying

a fully photon-inclusive rate, there are no large logarithms associated with the factorized

soft-photon corrections and therefore the partial higher order corrections that are included

with the recipe of ref. [5] are not expected to give the dominant contributions to any given

order: cancellations with unknown terms are possible. Motivated by this, in the present

work we give the corrections to decay distributions and rates to fixed chiral order, namely

O(e2p0), to which the complete answer is known. We shall then use the comparison with

the procedure of ref. [5] as a validation of our estimate of the theoretical uncertainty.

The virtual photon corrections to all Kℓ3 amplitudes (K = K±,K0 and ℓ = e, µ) are

known to O(e2p2) [5, 6], while the real photon emission was worked out explicitly in those

references only for Ke3 modes (and only for a specific prescription on the treatment of

real photon emission [19]). Our goal here is to provide a unified discussion of radiative

corrections of O(e2p0) to all Kℓ3 decay rates, working with the fully inclusive prescription

on real photon emission. We now sketch the derivation of the corrections induced by

virtual and real photon emission to fixed chiral order [O(e2p0)], and how they combine into

a master formula for the inclusive rate.

2.2.1 Virtual photons

One-loop amplitudes involving virtual photons, together with the associated local coun-

terterm contributions, induce an effective correction of O(e2p0) to the QCD form factors

fKπ
± , of the form:

fKπ
+ (t) → fKπ

+ (t) + δfKπ
+ (v) +

α

4π
Γc(v,m2

ℓ ,M
2
c ;M2

γ ) , (2.10)

fKπ
− (t) → fKπ

− (t) + δfKπ
− (v) , (2.11)

where Mc is the relevant charged meson mass and v = u ≡ (pK − pℓ)
2 for K± decays while

v = s ≡ (pπ +pℓ)
2 for K0 decays. The function Γc(v,m2

ℓ ,M
2
c ;M2

γ ) [5] encodes the universal

soft photon virtual corrections and is infrared divergent (thus it depends explicitly on the

infrared regulator Mγ). On the other hand, the corrections δfKπ
± (v) encode structure

2Since ū(pν) γµ (1 − γ5) v(pℓ) · (pK ± pπ)µ ∼ O(p2), EM corrections to fKπ
± start at O(e2p0). Moreover,

since y, z, rℓ, rπ ∼ O(1) we can book the densities A
(0)
1,2,3 as quantities of O(1). Therefore, corrections of

O(e2p0) to fKπ
± induce corrections to the decay distributions and rates of O(e2p0) (see eqs. (2.6) and (2.8)).

– 4 –



J
H
E
P
1
1
(
2
0
0
8
)
0
0
6

dependent effects through one-loop corrections and chiral low-energy constants [5]. We

report their expressions in appendix A in terms of functions defined in ref. [5].

Keeping in mind the chiral properties of fKπ
± (t), namely that f+(t) = 1 + O(p2) and

f−(t) = O(p2), the effect of virtual corrections to leading order in ChPT amounts to the

following O(e2p0) shift to the differential distribution of eq. (2.6):

δρ̄EM−virtual(y, z) = A
(0)
1 (y, z) ·

[
2 δfKπ

+ (v) +
α

2π
Γc(v,m2

ℓ ,M
2
c ;M2

γ )
]

+A
(0)
2 (y, z) · δfKπ

− (v) . (2.12)

2.2.2 Real photons

It is well known that only the inclusive sum of K → πℓν and K → πℓν + n γ (with

n = 1, 2, . . .) decay rates is infrared (IR) finite and observable. In the chiral power counting,

the leading contribution to the radiative amplitudes K(pK) → π(pπ) ℓ+(pℓ) νℓ(pν)γ(k) is

of O(ep): this is all we need for the analysis of the rates to O(e2p0). To this order the

radiative amplitudes read:

Mγ(K+→π0ℓ+νℓγ) =
eGF√

2
V ∗

us CK+ ×

×ū(pν)

[
(1+γ5)(2 /pπ

−mℓ)

(
ǫ∗ · pℓ

k · pℓ

− ǫ∗ · pK

k · pK
+

/k/ǫ∗

2k · pℓ

)]
v(pℓ) , (2.13)

Mγ(K0→π−ℓ+νℓγ) =
eGF√

2
V ∗

us CK0 ×

×ū(pν)

[
(1+γ5)(2 /pK

+mℓ)

(
ǫ∗ · pℓ

k · pℓ

− ǫ∗ · pπ

k · pπ
+

/k/ǫ∗

2k · pℓ

)]
v(pℓ) . (2.14)

The resulting correction to the differential (or total) decay rate can be calculated from

dΓ(K → πℓνγ) =
1

2MK

∑

pol

∣∣Mγ

∣∣2 dΩπℓνγ

(2π)8
, (2.15)

dΩπℓνγ =
∏

i=π,ℓ,ν,γ

d3pi

2 p0
i

δ(4)(pK − pπ − pℓ − pν − k) , (2.16)

where dΩπℓνγ is the 4-body Lorentz invariant phase space.

The square modulus of the radiative amplitude can be decomposed into the sum of an

IR singular term (TIR) and an IR finite inner bremsstrahlung term (TIB), as follows

∑

pol

|Mγ(K0 → π−ℓ+νℓγ)|2 =
e2G2

F |Vus|2C2
K0

2

[
TK0ℓ

IR + TK0ℓ
IB

]
, (2.17)

∑

pol

|Mγ(K+ → π0ℓ+νℓγ)|2 =
e2G2

F |Vus|2C2
K+

2

[
TK+ℓ

IR + TK+ℓ
IB

]
, (2.18)

with the IR singular pieces given by:

TK0ℓ
IR = 4M4

K A
(0)
1 (y, z)

×
[

− M2
π

(k · pπ+
M2

γ

2 )2
− m2

ℓ

(k · pℓ+
M2

γ

2 )2
+

2pπ · pℓ

(k · pπ+
M2

γ

2 )(k · pℓ+
M2

γ

2 )

]

, (2.19)
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TK+ℓ
IR = 4M4

K A
(0)
1 (y, z)

×
[
− M2

K

(k · pK−M2
γ

2 )2
− m2

ℓ

(k · pℓ+
M2

γ

2 )2
+

2pK · pℓ

(k · pK−M2
γ

2 )(k · pℓ+
M2

γ

2 )

]
. (2.20)

The terms TKℓ
IR generate an infrared divergence when integrated over the soft photon region

of the four-body phase space, while the remaining terms are IR finite. Integrating over all

variables except y and z, leads to a correction to the Dalitz plot density of the form

δρ̄EM−real(y, z) = A
(0)
1 (y, z) · α

π
I0(y, z;Mγ) + ∆IB

1 (y, z) , (2.21)

where I0(y, z;Mγ) arises from TIR while ∆IB
1 from TIB. The functions I0(y, z;Mγ) and

∆IB
1 (y, z) depend on the cut on hard real photon emission. Results based on integrating

over all kinematically allowed photon energies are known analytically [5, 6, 19].

Finally, although both I0(y, z;Mγ) and Γc(v,m2
ℓ ,M

2
c ;M2

γ ) are individually infrared

divergent, they combine into the IR finite function

∆IR(y, z) =
α

π

[
I0(y, z;Mγ) +

1

2
Γc(v,m2

ℓ ,M
2;M2

γ )

]
, (2.22)

and we end up with a finite correction to the Dalitz plot density:

δρ̄EM(y, z) = A
(0)
1 (y, z) ·

[
∆IR(y, z)+2 δfKπ

+ (v)
]

+ ∆IB
1 (y, z)+A

(0)
2 (y, z) ·δfKπ

− (v) . (2.23)

2.3 Master formula

After inclusion of both long-distance and short distance (Sew) radiative corrections, the

differential decay distribution reads:

dΓ

dy dz
=

G2
F |Vus|2 M5

K C2
K

128π3
Sew |fKπ

+ (0)|2
[
ρ̄(0)(y, z) + δρ̄EM(y, z)

]
. (2.24)

This expression should be the basis to properly determine experimentally the momentum-

dependence of the QCD form factors f̄±(t) appearing in ρ̄(0)(y, z).

Corrections to the decay rate are obtained by integrating over the variables y and

z. In the case of fully inclusive prescription on the radiated photon, the real photon EM

correction should be integrated not only over the 3-body region D3 but on the whole region

D4 allowed by 4-body kinematics. Taking into account all these corrections, the master

formula for Kℓ3 decay rates reads:

Γ(Kℓ3[γ]) =
G2

F |Vus|2 M5
K C2

K

128π3
Sew |fK0π−

+ (0)|2 I
(0)
Kℓ(λi)

[
1 + δKℓ

EM + δKπ
SU(2)

]
, (2.25)

where the strong isospin breaking correction is

δKπ
SU(2) ≡

(
fKπ
+ (0)

fK0π−

+ (0)

)2

− 1 (2.26)

– 6 –
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Figure 1: Density plot of the EM correction to the differential distribution

(δρ̄EM(y, z)/ρ̄(0)(λi)(y, z)) of K0
e3 (left panel) and K±

e3 (right panel).

and the EM radiative correction

δKℓ
EM = δKℓ

EM(D3) + δKℓ
EM(D4−3) (2.27)

receives contributions from the 3-body and 4-body kinematical regions:

δKℓ
EM(D3) =

1

I
(0)
Kℓ(λi)

·
∫

D3

dy dz δρ̄EM(y, z) , (2.28)

δKℓ
EM(D4−3) =

1

I
(0)
Kℓ(λi)

· α

2π4M6
K

∫

D4−3

dΩπℓνγ

(
TKℓ

IR + TKℓ
IB

)
. (2.29)

Note that Ginsberg’s prescription [19] for real photon emission, which was adopted in

refs. [5, 6], amounts to discarding the integral in eq. (2.29).

3. Results and discussion

The main outcome of our analysis are the differential corrections δρ̄EM(y, z) to the Dalitz

plot density (eq. (2.23)) and the integrated corrections δKℓ
EM(D3) and δKℓ

EM(D4−3) (eqs. (2.28)

and (2.29) respectively). δρ̄EM(y, z) is known analytically through the work of refs. [5,

6, 19]. The integration needed to calculate δKℓ
EM(D3) has been performed with the Gauss

quadrature method. On the other hand, the integration needed to calculate δKℓ
EM(D4−3) has

been performed with a Monte Carlo technique based on the RAMBOS event generator [20].

In order to give numerical results, we have to specify the input parameters. The

differential and integrated EM corrections to O(e2p0) depend on a number of LECs of

ChPT. The EM LECs are given by convolutions of appropriate QCD correlators with

known kernels. They have been recently estimated in refs. [7, 8] by replacing the QCD

correlators with meromorphic approximants, in the spirit of the large-NC expansion. We

use the results of refs. [7, 8] for our central values, and conservatively assign 100% fractional

uncertainty to the LECs.

The integrated corrections δKℓ
EM(D3) and δKℓ

EM(D4−3) also depend, through the normal-

ization factor I
(0)
Kℓ(λi), on the slope and curvature of the scalar and vector form factors,

namely λ+, λ
′′

+, and λ0. For these quantities we use the results of a global fit to all con-

sistent experimental data (i.e. without including the NA48 result) as reported in ref. [1]:

– 7 –
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Figure 2: Density plot of the EM correction to the differential distribution

(δρ̄EM(y, z)/ρ̄(0)(λi)(y, z)) of K0
µ3 (left panel) and K±

µ3 (right panel).

λ+ = (25.0 ± 0.8) · 10−3, λ
′′

+ = (1.6 ± 0.4) · 10−3, λ0 = (16.0 ± 0.8) · 10−3. The choice

of this reference set of input parameters is very simple but somewhat inconsistent as the

charged and neutral K parameters are distinguished by strong isospin breaking and EM

effects [13, 23]. However, one should keep in mind that the uncertainty on I
(0)
Kℓ(λi) induced

by the λi is below the percent level and is completely negligible in the analysis of δKℓ
EM

(although it has some impact on the extraction of Vus through eq. (2.25)). In table 1 we

provide the I
(0)
Kℓ(λi) corresponding to our choice λi, so the reader can easily convert our

results for δKℓ
EM to any choice of slope parameters with a simple re-scaling.

3.1 Corrections to the Dalitz plot

In figures 1 and 2 we show a density plot of the ratio δρ̄EM/ρ̄(0)(λi) for K0
e3, K±

e3, K0
µ3 and

K±
µ3 as a function of the variables y, z, corresponding to the input on λi and LECs specified

in the previous subsection.3 The theoretical uncertainty on the LECs and higher order cor-

rections induces an overall uncertainty of about ±0.3% in δρ̄EM/ρ̄(0)(λi). It is important to

notice that the correction to the Dalitz distribution can be locally large (O(10%)) and does

not have definite sign, implying possible cancellations in the integrated total EM correction.

3.2 Corrections to the decay rates

Table 1 summarizes the numerical results of the long-distance radiative corrections to fixed

order e2p0, obtained using the central values for the LECs, slopes, and curvature of the

form factors as described above.

Two prominent features of the results in table 1 can be understood on a qualitative

level. First, the EM corrections to the neutral K decays are expected to be positive and

sizable on account of the Coulomb final state interaction term between ℓ+ and π−, that

produces a correction factor of πα/vrel
ℓ+π− ∼ 2% over most of the Dalitz plot. While the

exact correction and the relative size of K0
µ3 and K0

e3 depend on other effects such as the

emission of real photons, the qualitative expectation based on Coulomb interaction is con-

firmed by the detailed calculation. Second, the large hierarchy δKµ
EM(D4−3) ≪ δKe

EM(D4−3)

admits a simple interpretation in terms of bremsstrahlung off the charged lepton in the

3Numerical tables for these corrections are available from the authors upon request.
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final state. The probability of emitting soft photons is a function of the lepton velocity

vℓ which becomes logarithmically singular as vℓ → 1, thus enhancing the electron emis-

sion. For typical values of vℓ in D4−3, the semiclassical emission probability [22] implies

δKe
EM(D4−3)/δ

Kµ
EM(D4−3) ∼ 20 → 40.

The theoretical uncertainty to be assigned to δKℓ
EM arises from two sources: the input

parameters (LECs, λi) appearing in the O(e2p0) correction and unknown higher order

terms in the EFT expansion, starting at O(e2p2). For the parametric uncertainty we find

that:

• Experimental errors on the form factor parameters λ+, λ
′′

+, and λ0 induce a fractional

uncertainty in I
(0)
Kℓ(λi) and in δKℓ

EM well below the percent level [1]. We can safely

ignore this source of uncertainty in δKℓ
EM.

• To the order we work, the electromagnetic LECs contribute a v-independent term to

δfKπ
± (v), which thus affects the decay rates as follows,

δKℓ
EM(D3) ∼ 2 δf+

∣∣∣
LECs

·

∫

D3

dydzA
(0)
1 (y, z)

I
(0)
Kℓ(λi)

+ δf−

∣∣∣
LECs

·

∫

D3

dydzA
(0)
2 (y, z)

I
(0)
Kℓ(λi)

. (3.1)

The coefficient of 2 δf+ is O(1) while the coefficient of δf− is roughly 0.2 for Kµ3

decays and completely negligible for Ke3 decays, being O(me/MK)2. Taking a very

conservative attitude, we assign a 100% fractional uncertainty to the LECs X1 and

Xphys
6 contributing to δf+ (we use LECs central values from refs. [7, 8]). Treating

the LEC errors as independent leads to an absolute uncertainty of ±0.11% in δK0ℓ
EM

and of ±0.16% in δK±ℓ
EM .

In order to discuss the error coming from higher order chiral corrections not included

in our analysis, we find it useful to decompose (to each chiral order) the EM corrections

δKℓ in terms of δ1,2,3,4:

δK0e = δ1 + δ2 + δ3 + δ4 ,

δK0µ = δ1 + δ2 − δ3 − δ4 ,

δK±e = δ1 − δ2 + δ3 − δ4 ,

δK±µ = δ1 − δ2 − δ3 + δ4 . (3.2)

Here δ1 represents a correction common to all modes, δ2 a correction anti-correlated in

kaon isospin but blind to lepton flavor, and finally δ3,4 are lepton-universality breaking

terms, correlated and anti-correlated in kaon isospin, respectively. To O(e2p0) we find

δe2p0

1 = 0.63%, δe2p0

2 = 0.57%, δe2p0

3 = −0.08%, δe2p0

4 = −0.12%. On the basis of chiral

power counting we expect the higher order corrections to scale as

δe2p2

i ∼ (MK/(4πFπ))2 · δe2p0

i ∼ 0.2 · δe2p0

i . (3.3)

This estimate is validated by comparison of the fixed chiral order results with the ones

obtained within the “soft-photon factorization” approach discussed in section 4 of ref. [5],
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I
(0)
Kℓ(λi) δKℓ

EM(D3)(%) δKℓ
EM(D4−3)(%) δKℓ

EM(%)

K0
e3 0.103070 0.50 0.49 0.99 ± 0.22

K±
e3 0.105972 -0.35 0.45 0.10 ± 0.25

K0
µ3 0.068467 1.38 0.02 1.40 ± 0.22

K±
µ3 0.070324 0.007 0.009 0.016 ± 0.25

Table 1: Summary of phase space integrals and EM corrections to the Kℓ3 decay rates. The

EM corrections are calculated to fixed order in ChPT (O(e2p0)). The phase space integrals are

calculated using slope and curvature parameters from the fit of ref. [1]. The uncertainty estimate

is discussed in the text.

which include a class of higher order chiral corrections (see table 2).4 The only anomaly

appears to be in the coefficient δ3, where we find δ3 : −0.08% → −0.16% when going from

fixed chiral order to the soft factorization scheme. This can be traced back to the cancel-

lation between the negative contribution from D3 (-0.31%) and the positive contribution

from D4−3 (0.23%). Multiplying these individual pieces by 0.2 gives ∼ 0.06 and ∼ 0.05,

respectively, which is just the order of magnitude of the shift we are seeing (-0.08 → -0.16).

Based on the above discussion, we bound the higher order uncertainties as follows:

|δe2p2

1 | < 0.13%, |δe2p2

2 | < 0.11%, |δe2p2

3 | < 0.08%, |δe2p2

4 | < 0.025%. Assuming that the

uncertainties from δi and from each LEC are uncorrelated, we arrive to the errors quoted

in table 1 for the total corrections, with correlation matrix given by:




1 +0.081 +0.685 −0.147

1 −0.147 +0.764

1 +0.081

1




. (3.4)

Finally, the above results allow us to evaluate the uncertainties on the linear combinations

of δKℓ
EM which are relevant for lepton universality and strong isospin-breaking tests:

δK0e
EM − δK0µ

EM = −(0.41 ± 0.17)% , (3.5)

δK±e
EM − δK±µ

EM = (0.08 ± 0.17)% , (3.6)

δK±e
EM − δK0e

EM = −(0.89 ± 0.32)% , (3.7)

δK±µ
EM − δK0µ

EM = −(1.38 ± 0.32)% . (3.8)

4. Conclusions

In this work we have provided a unified discussion of the radiative corrections of O(e2p0) to

all Kℓ3 decay rates. We have argued that through the calculation of K → πℓν amplitudes

4Note that in section 5.3 of ref. [5] an alternative factorization prescription is given, which is valid only

for Ke3 modes. The latter prescription was used in the numerical analysis of refs. [5, 6] and would lead to

results slightly different from those of table 2. The first two entries in the first column should be replaced

as follows: 0.41 → 0.56 and −0.564 → −0.41.
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δKℓ
EM(D3)(%) δKℓ

EM(D4−3)(%) δKℓ
EM(%)

K0
e3 0.41 0.59 1.0

K±
e3 -0.564 0.528 -0.04

K0
µ3 1.57 0.04 1.61

K±
µ3 -0.006 0.011 0.005

Table 2: Summary of EM corrections to the Kℓ3 decay rates calculated according to the “soft-

photon factorization” approach of ref. [5], which includes incomplete higher order terms in the

chiral expansion. Comparison with the results of table 1 validates our estimate of the theoretical

uncertainties.

to O(e2p2) in the chiral effective theory we can derive the complete corrections of O(e2p0)

to the Dalitz plot density and the integrated decay rate. We have systematically discarded

higher order effects that are only partially known, and we have included the unknown

effects in a generous estimate of the theoretical uncertainty. For the first time we have

presented complete numerical results for the Kµ3 modes, while also updating the previous

analysis of Ke3 modes.

The main outcome of our investigation is summarized in table 1, which contains the

corrections to the total (fully photon inclusive) decay rates of all Kℓ3 decay modes (K =

K±,K0; ℓ = e, µ). These results provide important theoretical input for the determination

of the product fK0π−

+ (0) · Vus from Kℓ3 decays at the 0.2% level [1] through eq. (2.25).

This task requires as additional theoretical input the factor δKπ
SU(2), which has been recently

updated in refs. [13, 23]. We refrain here from producing a number for fK0π−

+ (0) · Vus:

the result reflecting most recent experimental data can be found in the Flavianet Kaon

Working Group web page [24].

Further reduction of the theoretical uncertainty on the corrections δEM
Kℓ would require

an analysis of the amplitudes to O(e2p4) in ChPT, which is beyond the scope of this work.

At the moment there appears to be no immediate need for such an analysis, since the

error on Vus is dominated by the ∼ 1% theoretical uncertainty in fK0π−

+ (0), for which a

compilation and discussion of theoretical results can be found in ref. [1].
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A. Corrections induced by virtual photons: δfKπ

±
(v)

Using the notation of refs. [5, 6] with fEM−loc
± ≡ f̂±, we have:

δfK+π0

+ (u) =
α

4π

[
Γ1(u,m2

ℓ ,M
2
K) + Γ2(u,m2

ℓ ,M
2
K)
]

+ f̂K+π0

+ , (A.1)

δfK+π0

− (u) =
α

4π

[
Γ1(u,m2

ℓ ,M
2
K) − Γ2(u,m2

ℓ ,M
2
K)
]

+ f̂K+π0

− , (A.2)

and

δfK0π−

+ (s) =
α

4π

[
Γ1(s,m

2
ℓ ,M

2
π) + Γ2(s,m

2
ℓ ,M

2
π)
]

+ f̂K0π−

+ , (A.3)

δfK0π−

− (s) =
α

4π

[
Γ2(s,m

2
ℓ ,M

2
π) − Γ1(s,m

2
ℓ ,M

2
π)
]

+ f̂K0π−

− . (A.4)
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